Symbolic Computing In Probabilistic And Stochastic Analysis
نویسنده
چکیده
The main aim is to present recent developments in applications of symbolic computing in probabilistic and stochastic analysis, and this is done using the example of the well-known MAPLE system. The key theoretical methods discussed are (i) analytical derivations, (ii) the classical Monte-Carlo simulation approach, (iii) the stochastic perturbation technique, as well as (iv) some semi-analytical approaches. It is demonstrated in particular how to engage the basic symbolic tools implemented in any system to derive the basic equations for the stochastic perturbation technique and how to make an efficient implementation of the semi-analytical methods using an automatic differentiation and integration provided by the computer algebra program itself. The second important illustration is probabilistic extension of the finite element and finite difference methods coded in MAPLE, showing how to solve boundary value problems with random parameters in the environment of symbolic computing. The response function method belongs to the third group, where interference of classical deterministic software with the non-linear fitting numerical techniques available in various symbolic environments is displayed. We recover in this context the probabilistic structural response in engineering systems and show how to solve partial differential equations including Gaussian randomness in their coefficients.
منابع مشابه
Multi-item inventory model with probabilistic demand function under permissible delay in payment and fuzzy-stochastic budget constraint: A signomial geometric programming method
This study proposes a new multi-item inventory model with hybrid cost parameters under a fuzzy-stochastic constraint and permissible delay in payment. The price and marketing expenditure dependent stochastic demand and the demand dependent the unit production cost are considered. Shortages are allowed and partially backordered. The main objective of this paper is to determine selling price, mar...
متن کاملStochastic Satisfiability Modulo Theory: A Novel Technique for the Analysis of Probabilistic Hybrid Systems
The analysis of hybrid systems exhibiting probabilistic behaviour is notoriously difficult. To enable mechanised analysis of such systems, we extend the reasoning power of arithmetic satisfiability-modulo-theory solving (SMT) by a comprehensive treatment of randomized (a.k.a. stochastic) quantification over discrete variables within the mixed Boolean-arithmetic constraint system. This provides ...
متن کاملApplying Point Estimation and Monte Carlo Simulation Methods in Solving Probabilistic Optimal Power Flow Considering Renewable Energy Uncertainties
The increasing penetration of renewable energy results in changing the traditional power system planning and operation tools. As the generated power by the renewable energy resources are probabilistically changed, the certain power system analysis tolls cannot be applied in this case. Probabilistic optimal power flow is one of the most useful tools regarding the power system analysis in presen...
متن کاملParsing and Hypergraphs
While symbolic parsers can be viewed as deduction systems, this view is less natural for probabilistic parsers. We present a view of parsing as directed hypergraph analysis which naturally covers both symbolic and probabilistic parsing. We illustrate the approach by showing how a dynamic extension of Dijkstra’s algorithm can be used to construct a probabilistic chart parser with an O(n) time bo...
متن کاملSemi-Symbolic Computation of Efficient Controllers in Probabilistic Environments
We present a semi-symbolic algorithm for synthesizing efficient controllers in a stochastic environment, implemented as an add-on to the probabilistic model checker PRISM. The user specifies the environment and the controllable actions using a Markov Decision Process (MDP), modeled in the PRISM language. Controller efficiency is defined with respect to a user-specified assignment of costs and r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Mathematics and Computer Science
دوره 25 شماره
صفحات -
تاریخ انتشار 2015